z-logo
Premium
Long‐Life Lead‐Acid Battery for High‐Rate Partial‐State‐of‐Charge Operation Enabled by a Rice‐Husk‐Based Activated Carbon Negative Electrode Additive
Author(s) -
Lin Zheqi,
Zhang Wenli,
Lin Nan,
Lin Haibo,
Shi Jun
Publication year - 2020
Publication title -
chemistryselect
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.437
H-Index - 34
ISSN - 2365-6549
DOI - 10.1002/slct.201904280
Subject(s) - activated carbon , electrode , lead–acid battery , materials science , battery (electricity) , mesoporous material , carbon fibers , state of charge , chemical engineering , chemistry , composite material , catalysis , organic chemistry , physics , adsorption , quantum mechanics , composite number , engineering , power (physics)
Lead sulfation severely shortens the cycling life of lead‐acid battery under high‐rate partial‐state‐of‐charge (HRPSoC) operation. Adding carbon materials into negative active mass has been demonstrated as an effective strategy to suppress the sulfation. In this paper, rice‐husk‐based activated carbon (RHAC) with high specific surface area and high pore volume exhibits excellent performances on enhancing the discharge capacity, the dynamic charge acceptance and especially the cycling life of negative electrode of lead acid battery. Results show that the HRPSoC cycling life of negative electrode with RHAC exceeds 5000 cycles which is 4.65 and 1.42 times that of blank negative electrode and negative electrode with commercial activated carbon, respectively. These outstanding performances are ascribed to the unique architectural properties of RHAC comparing with commercial activated carbon, such as three‐dimensional porous structure for acid storage, high mesopore volume for efficient ions transport and large external specific surface area for energetic Pb deposition.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here