z-logo
Premium
Incorporating partial adherence into the principal stratification analysis framework
Author(s) -
Sanders Eric,
Gustafson Paul,
Karim Mohammad Ehsanul
Publication year - 2021
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.8986
Subject(s) - inference , estimator , stratification (seeds) , principal (computer security) , computer science , principal component analysis , population , clinical trial , monte carlo method , statistics , econometrics , mathematics , artificial intelligence , medicine , seed dormancy , botany , germination , environmental health , pathology , dormancy , biology , operating system
Participants in pragmatic clinical trials often partially adhere to treatment. However, to simplify the analysis, most studies dichotomize adherence (supposing that subjects received either full or no treatment), which can introduce biases in the results. For example, the popular approach of principal stratification is based on the concept that the population can be separated into strata based on how they will react to treatment assignment, but this framework does not include strata in which a partially adhering participant would belong. We expanded the principal stratification framework to allow partial adherers to have their own principal stratum and treatment level. The expanded approach is feasible in pragmatic settings. We have designed a Monte Carlo posterior sampling method to obtain the relevant parameter estimates. Simulations were completed under a range of settings where participants partially adhered to treatment, including a hypothetical setting from a published simulation trial on the topic of partial adherence. The inference method is additionally applied to data from a real randomized clinical trial that features partial adherence. Comparison of the simulation results indicated that our method is superior in most cases to the biased estimators obtained through standard principal stratification. Simulation results further suggest that our proposed method may lead to increased accuracy of inference in settings where study participants only partially adhere to assigned treatment.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here