z-logo
Premium
Formulating causal questions and principled statistical answers
Author(s) -
Goetghebeur Els,
le Cessie Saskia,
De Stavola Bianca,
Moodie Erica EM,
Waernbaum Ingeborg
Publication year - 2020
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.8741
Subject(s) - causal inference , covariate , computer science , outcome (game theory) , set (abstract data type) , confounding , inference , randomized experiment , statistical inference , causal model , econometrics , machine learning , artificial intelligence , statistics , mathematics , mathematical economics , programming language
Although review papers on causal inference methods are now available, there is a lack of introductory overviews on what they can render and on the guiding criteria for choosing one particular method. This tutorial gives an overview in situations where an exposure of interest is set at a chosen baseline (“point exposure”) and the target outcome arises at a later time point. We first phrase relevant causal questions and make a case for being specific about the possible exposure levels involved and the populations for which the question is relevant. Using the potential outcomes framework, we describe principled definitions of causal effects and of estimation approaches classified according to whether they invoke the no unmeasured confounding assumption (including outcome regression and propensity score‐based methods) or an instrumental variable with added assumptions. We mainly focus on continuous outcomes and causal average treatment effects. We discuss interpretation, challenges, and potential pitfalls and illustrate application using a “simulation learner,” that mimics the effect of various breastfeeding interventions on a child's later development. This involves a typical simulation component with generated exposure, covariate, and outcome data inspired by a randomized intervention study. The simulation learner further generates various (linked) exposure types with a set of possible values per observation unit, from which observed as well as potential outcome data are generated. It thus provides true values of several causal effects. R code for data generation and analysis is available on www.ofcaus.org , where SAS and Stata code for analysis is also provided.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here