Premium
Doubly robust estimation and causal inference for recurrent event data
Author(s) -
Su ChienLin,
Steele Russell,
Shrier Ian
Publication year - 2020
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.8541
Subject(s) - estimator , semiparametric regression , causal inference , computer science , statistics , semiparametric model , inference , event (particle physics) , econometrics , estimating equations , mathematics , artificial intelligence , physics , quantum mechanics
Many longitudinal databases record the occurrence of recurrent events over time. In this article, we propose a new method to estimate the average causal effect of a binary treatment for recurrent event data in the presence of confounders. We propose a doubly robust semiparametric estimator based on a weighted version of the Nelson‐Aalen estimator and a conditional regression estimator under an assumed semiparametric multiplicative rate model for recurrent event data. We show that the proposed doubly robust estimator is consistent and asymptotically normal. In addition, a model diagnostic plot of residuals is presented to assess the adequacy of our proposed semiparametric model. We then evaluate the finite sample behavior of the proposed estimators under a number of simulation scenarios. Finally, we illustrate the proposed methodology via a database of circus artist injuries.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom