z-logo
Premium
A latent variable approach to potential outcomes for emergency department admission decisions
Author(s) -
Cochran Amy L.,
Rathouz Paul J.,
Kocher Keith E.,
ZayasCabán Gabriel
Publication year - 2019
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.8210
Subject(s) - emergency department , observational study , health care , latent variable , medicine , latent variable model , medical emergency , psychology , computer science , nursing , machine learning , economics , economic growth , pathology
In emergency departments (EDs), care providers continuously weigh admissions against continued monitoring and treatment often without knowing their condition and health needs. To understand the decision process and its causal effect on outcomes, an observational study must contend with unobserved/missing information and a lack of exchangeability between admitted and discharged patients. Our goal was to provide a general framework to evaluate admission decisions from electronic healthcare records (EHRs). We describe admission decisions as a decision‐making process in which the patient's health needs is a binary latent variable. We estimate latent health needs from EHR with only partial knowledge of the decision process (ie, initial evaluation, admission decision, length of stay). Estimated latent health needs are then used to understand the admission decision and the decision's causal impact on outcomes. For the latter, we assume potential outcomes are stochastically independent from the admission decision conditional on latent health needs. As a case study, we apply our approach to over 150 000 patient encounters with the ED from the University of Michigan Health System collected from August 2012 through July 2015. We estimate that while admitting a patient with higher latent needs reduces the 30‐day risk of revisiting the ED or later being admitted through the ED by over 79%, admitting a patient with lower latent needs actually increases these 30‐day risks by 3.0% and 7.6%, respectively.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here