Premium
Optimal probability weights for estimating causal effects of time‐varying treatments with marginal structural Cox models
Author(s) -
Santacatterina Michele,
GarcíaPareja Celia,
Bellocco Rino,
Sönnerborg Anders,
Ekström Anna Mia,
Bottai Matteo
Publication year - 2018
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.8080
Subject(s) - marginal structural model , mathematics , estimator , truncation (statistics) , statistics , set (abstract data type) , confounding , computer science , programming language
Marginal structural Cox models have been used to estimate the causal effect of a time‐varying treatment on a survival outcome in the presence of time‐dependent confounders. These methods rely on the positivity assumption, which states that the propensity scores are bounded away from zero and one. Practical violations of this assumption are common in longitudinal studies, resulting in extreme weights that may yield erroneous inferences. Truncation, which consists of replacing outlying weights with less extreme ones, is the most common approach to control for extreme weights to date. While truncation reduces the variability in the weights and the consequent sampling variability of the estimator, it can also introduce bias. Instead of truncated weights, we propose using optimal probability weights, defined as those that have a specified variance and the smallest Euclidean distance from the original, untruncated weights. The set of optimal weights is obtained by solving a constrained quadratic optimization problem. The proposed weights are evaluated in a simulation study and applied to the assessment of the effect of treatment on time to death among people in Sweden who live with human immunodeficiency virus and inject drugs.