Premium
Time, frequency, and time‐varying Granger‐causality measures in neuroscience
Author(s) -
Cekic Sezen,
Grandjean Didier,
Renaud Olivier
Publication year - 2018
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.7621
Subject(s) - granger causality , causality (physics) , transfer entropy , coherence (philosophical gambling strategy) , computer science , econometrics , artificial intelligence , principle of maximum entropy , statistics , mathematics , machine learning , physics , quantum mechanics
This article proposes a systematic methodological review and an objective criticism of existing methods enabling the derivation of time, frequency, and time‐varying Granger‐causality statistics in neuroscience. The capacity to describe the causal links between signals recorded at different brain locations during a neuroscience experiment is indeed of primary interest for neuroscientists, who often have very precise prior hypotheses about the relationships between recorded brain signals. The increasing interest and the huge number of publications related to this topic calls for this systematic review, which describes the very complex methodological aspects underlying the derivation of these statistics. In this article, we first present a general framework that allows us to review and compare Granger‐causality statistics in the time domain, and the link with transfer entropy. Then, the spectral and the time‐varying extensions are exposed and discussed together with their estimation and distributional properties. Although not the focus of this article, partial and conditional Granger causality, dynamical causal modelling, directed transfer function, directed coherence, partial directed coherence, and their variant are also mentioned.