z-logo
Premium
Model validation and influence diagnostics for regression models with missing covariates
Author(s) -
Bernhardt Paul W.
Publication year - 2018
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.7584
Subject(s) - covariate , missing data , imputation (statistics) , statistics , logistic regression , regression analysis , computer science , inference , regression , econometrics , data mining , mathematics , artificial intelligence
Missing covariate values are prevalent in regression applications. While an array of methods have been developed for estimating parameters in regression models with missing covariate data for a variety of response types, minimal focus has been given to validation of the response model and influence diagnostics. Previous research has mainly focused on estimating residuals for observations with missing covariates using expected values, after which specialized techniques are needed to conduct proper inference. We suggest a multiple imputation strategy that allows for the use of standard methods for residual analyses on the imputed data sets or a stacked data set. We demonstrate the suggested multiple imputation method by analyzing the Sleep in Mammals data in the context of a linear regression model and the New York Social Indicators Status data with a logistic regression model.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here