z-logo
Premium
Exposure enriched outcome dependent designs for longitudinal studies of gene–environment interaction
Author(s) -
Sun Zhichao,
Mukherjee Bhramar,
Estes Jason P.,
Vokonas Pantel S.,
Park Sung Kyun
Publication year - 2017
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.7332
Subject(s) - covariate , computer science , outcome (game theory) , sampling design , statistics , sampling (signal processing) , clinical study design , econometrics , sample size determination , statistical power , estimation , machine learning , medicine , bioinformatics , mathematics , clinical trial , engineering , environmental health , biology , mathematical economics , filter (signal processing) , systems engineering , computer vision , population
Joint effects of genetic and environmental factors have been increasingly recognized in the development of many complex human diseases. Despite the popularity of case‐control and case‐only designs, longitudinal cohort studies that can capture time‐varying outcome and exposure information have long been recommended for gene–environment (G × E) interactions. To date, literature on sampling designs for longitudinal studies of G × E interaction is quite limited. We therefore consider designs that can prioritize a subsample of the existing cohort for retrospective genotyping on the basis of currently available outcome, exposure, and covariate data. In this work, we propose stratified sampling based on summaries of individual exposures and outcome trajectories and develop a full conditional likelihood approach for estimation that adjusts for the biased sample. We compare the performance of our proposed design and analysis with combinations of different sampling designs and estimation approaches via simulation. We observe that the full conditional likelihood provides improved estimates for the G × E interaction and joint exposure effects over uncorrected complete‐case analysis, and the exposure enriched outcome trajectory dependent design outperforms other designs in terms of estimation efficiency and power for detection of the G × E interaction. We also illustrate our design and analysis using data from the Normative Aging Study, an ongoing longitudinal cohort study initiated by the Veterans Administration in 1963. Copyright © 2017 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here