z-logo
Premium
Estimators for longitudinal latent exposure models: examining measurement model assumptions
Author(s) -
Sánchez Brisa N.,
Kim Sehee,
Sammel Mary D.
Publication year - 2017
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.7268
Subject(s) - latent variable , estimator , econometrics , latent variable model , statistics , multivariate statistics , conditional independence , covariate , local independence , instrumental variable , random effects model , latent class model , computer science , mathematics , medicine , meta analysis
Latent variable (LV) models are increasingly being used in environmental epidemiology as a way to summarize multiple environmental exposures and thus minimize statistical concerns that arise in multiple regression. LV models may be especially useful when multivariate exposures are collected repeatedly over time. LV models can accommodate a variety of assumptions but, at the same time, present the user with many choices for model specification particularly in the case of exposure data collected repeatedly over time. For instance, the user could assume conditional independence of observed exposure biomarkers given the latent exposure and, in the case of longitudinal latent exposure variables, time invariance of the measurement model. Choosing which assumptions to relax is not always straightforward. We were motivated by a study of prenatal lead exposure and mental development, where assumptions of the measurement model for the time‐changing longitudinal exposure have appreciable impact on (maximum‐likelihood) inferences about the health effects of lead exposure. Although we were not particularly interested in characterizing the change of the LV itself, imposing a longitudinal LV structure on the repeated multivariate exposure measures could result in high efficiency gains for the exposure‐disease association. We examine the biases of maximum likelihood estimators when assumptions about the measurement model for the longitudinal latent exposure variable are violated. We adapt existing instrumental variable estimators to the case of longitudinal exposures and propose them as an alternative to estimate the health effects of a time‐changing latent predictor. We show that instrumental variable estimators remain unbiased for a wide range of data generating models and have advantages in terms of mean squared error. Copyright © 2017 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here