z-logo
Premium
Neither fixed nor random: weighted least squares meta‐analysis
Author(s) -
Stanley T. D.,
Doucouliagos Hristos
Publication year - 2015
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.6481
Subject(s) - random effects model , statistics , fixed effects model , estimator , mathematics , meta analysis , generalized least squares , sample size determination , confidence interval , econometrics , medicine , panel data
This study challenges two core conventional meta‐analysis methods: fixed effect and random effects. We show how and explain why an unrestricted weighted least squares estimator is superior to conventional random‐effects meta‐analysis when there is publication (or small‐sample) bias and better than a fixed‐effect weighted average if there is heterogeneity. Statistical theory and simulations of effect sizes, log odds ratios and regression coefficients demonstrate that this unrestricted weighted least squares estimator provides satisfactory estimates and confidence intervals that are comparable to random effects when there is no publication (or small‐sample) bias and identical to fixed‐effect meta‐analysis when there is no heterogeneity. When there is publication selection bias, the unrestricted weighted least squares approach dominates random effects; when there is excess heterogeneity, it is clearly superior to fixed‐effect meta‐analysis. In practical applications, an unrestricted weighted least squares weighted average will often provide superior estimates to both conventional fixed and random effects. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here