Premium
Semiparametric Bayesian inference on skew–normal joint modeling of multivariate longitudinal and survival data
Author(s) -
Tang AnMin,
Tang NianSheng
Publication year - 2015
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.6373
Subject(s) - multivariate statistics , dirichlet process , gibbs sampling , multivariate normal distribution , bayesian probability , statistics , random effects model , mathematics , bayesian inference , computer science , econometrics , medicine , meta analysis
We propose a semiparametric multivariate skew–normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within‐subject error by using a centered Dirichlet process prior to specify the random effects distribution and using a multivariate skew–normal distribution to specify the within‐subject error distribution and model trajectory functions of longitudinal responses semiparametrically. A Bayesian approach is proposed to simultaneously obtain Bayesian estimates of unknown parameters, random effects and nonparametric functions by combining the Gibbs sampler and the Metropolis–Hastings algorithm. Particularly, a Bayesian local influence approach is developed to assess the effect of minor perturbations to within‐subject measurement error and random effects. Several simulation studies and an example are presented to illustrate the proposed methodologies. Copyright © 2014 John Wiley & Sons, Ltd.