z-logo
Premium
Bayesian approach for flexible modeling of semicompeting risks data
Author(s) -
Han Baoguang,
Yu Menggang,
Dignam James J.,
Rathouz Paul J.
Publication year - 2014
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.6313
Subject(s) - computer science , censoring (clinical trials) , event (particle physics) , terminal (telecommunication) , bayesian probability , data mining , statistics , artificial intelligence , mathematics , quantum mechanics , telecommunications , physics
Semicompeting risks data arise when two types of events, non‐terminal and terminal, are observed. When the terminal event occurs first, it censors the non‐terminal event, but not vice versa. To account for possible dependent censoring of the non‐terminal event by the terminal event and to improve prediction of the terminal event using the non‐terminal event information, it is crucial to model their association properly. Motivated by a breast cancer clinical trial data analysis, we extend the well‐known illness–death models to allow flexible random effects to capture heterogeneous association structures in the data. Our extension also represents a generalization of the popular shared frailty models that usually assume that the non‐terminal event does not affect the hazards of the terminal event beyond a frailty term. We propose a unified Bayesian modeling approach that can utilize existing software packages for both model fitting and individual‐specific event prediction. The approach is demonstrated via both simulation studies and a breast cancer data set analysis. Copyright © 2014 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here