Premium
Variable selection in subdistribution hazard frailty models with competing risks data
Author(s) -
Ha Il Do,
Lee Minjung,
Oh Seungyoung,
Jeong JongHyeon,
Sylvester Richard,
Lee Youngjo
Publication year - 2014
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.6257
Subject(s) - lasso (programming language) , univariate , feature selection , computer science , selection (genetic algorithm) , variable (mathematics) , scad , model selection , statistics , mathematics , artificial intelligence , medicine , multivariate statistics , mathematical analysis , psychiatry , world wide web , myocardial infarction
The proportional subdistribution hazards model (i.e. Fine‐Gray model) has been widely used for analyzing univariate competing risks data. Recently, this model has been extended to clustered competing risks data via frailty. To the best of our knowledge, however, there has been no literature on variable selection method for such competing risks frailty models. In this paper, we propose a simple but unified procedure via a penalized h‐likelihood (HL) for variable selection of fixed effects in a general class of subdistribution hazard frailty models, in which random effects may be shared or correlated. We consider three penalty functions, least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD) and HL, in our variable selection procedure. We show that the proposed method can be easily implemented using a slight modification to existing h‐likelihood estimation approaches. Numerical studies demonstrate that the proposed procedure using the HL penalty performs well, providing a higher probability of choosing the true model than LASSO and SCAD methods without losing prediction accuracy. The usefulness of the new method is illustrated using two actual datasets from multi‐center clinical trials. Copyright © 2014 John Wiley & Sons, Ltd.