Premium
Bayesian hierarchical model for multiple repeated measures and survival data: an application to Parkinson's disease
Author(s) -
Luo Sheng,
Wang Jue
Publication year - 2014
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.6228
Subject(s) - categorical variable , multivariate statistics , marginal model , random effects model , multilevel model , bayesian probability , dropout (neural networks) , mixed model , computer science , statistics , econometrics , psychology , medicine , regression analysis , machine learning , mathematics , artificial intelligence , meta analysis
Multilevel item response theory models have been increasingly used to analyze the multivariate longitudinal data of mixed types (e.g., continuous and categorical) in clinical studies. To address the possible correlation between multivariate longitudinal measures and time to terminal events (e.g., death and dropout), joint models that consist of a multilevel item response theory submodel and a survival submodel have been previously developed. However, in multisite studies, multiple patients are recruited and treated by the same clinical site. There can be a significant site correlation because of common environmental and socioeconomic status, and similar quality of care within site. In this article, we develop and study several hierarchical joint models with the hazard of terminal events dependent on shared random effects from various levels. We conduct extensive simulation study to evaluate the performance of various models under different scenarios. The proposed hierarchical joint models are applied to the motivating deprenyl and tocopherol antioxidative therapy of Parkinsonism study to investigate the effect of tocopherol in slowing Parkinson's disease progression. Copyright © 2014 John Wiley & Sons, Ltd.