z-logo
Premium
A toolkit for measurement error correction, with a focus on nutritional epidemiology
Author(s) -
Keogh Ruth H.,
White Ian R.
Publication year - 2014
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.6095
Subject(s) - nutritional epidemiology , observational error , statistics , computer science , imputation (statistics) , errors in variables models , regression , heteroscedasticity , calibration , mean squared prediction error , epidemiology , medicine , econometrics , mathematics , missing data , pathology
Exposure measurement error is a problem in many epidemiological studies, including those using biomarkers and measures of dietary intake. Measurement error typically results in biased estimates of exposure‐disease associations, the severity and nature of the bias depending on the form of the error. To correct for the effects of measurement error, information additional to the main study data is required. Ideally, this is a validation sample in which the true exposure is observed. However, in many situations, it is not feasible to observe the true exposure, but there may be available one or more repeated exposure measurements, for example, blood pressure or dietary intake recorded at two time points. The aim of this paper is to provide a toolkit for measurement error correction using repeated measurements. We bring together methods covering classical measurement error and several departures from classical error: systematic, heteroscedastic and differential error. The correction methods considered are regression calibration, which is already widely used in the classical error setting, and moment reconstruction and multiple imputation, which are newer approaches with the ability to handle differential error. We emphasize practical application of the methods in nutritional epidemiology and other fields. We primarily consider continuous exposures in the exposure‐outcome model, but we also outline methods for use when continuous exposures are categorized. The methods are illustrated using the data from a study of the association between fibre intake and colorectal cancer, where fibre intake is measured using a diet diary and repeated measures are available for a subset. © 2014 The Authors. Statistics in Medicine Published by John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here