z-logo
Premium
Variance reduction in randomised trials by inverse probability weighting using the propensity score
Author(s) -
Williamson Elizabeth J.,
Forbes Andrew,
White Ian R.
Publication year - 2013
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.5991
Subject(s) - propensity score matching , covariate , estimator , statistics , inverse probability weighting , mathematics , delta method , econometrics
In individually randomised controlled trials, adjustment for baseline characteristics is often undertaken to increase precision of the treatment effect estimate. This is usually performed using covariate adjustment in outcome regression models. An alternative method of adjustment is to use inverse probability‐of‐treatment weighting (IPTW), on the basis of estimated propensity scores. We calculate the large‐sample marginal variance of IPTW estimators of the mean difference for continuous outcomes, and risk difference, risk ratio or odds ratio for binary outcomes. We show that IPTW adjustment always increases the precision of the treatment effect estimate. For continuous outcomes, we demonstrate that the IPTW estimator has the same large‐sample marginal variance as the standard analysis of covariance estimator. However, ignoring the estimation of the propensity score in the calculation of the variance leads to the erroneous conclusion that the IPTW treatment effect estimator has the same variance as an unadjusted estimator; thus, it is important to use a variance estimator that correctly takes into account the estimation of the propensity score. The IPTW approach has particular advantages when estimating risk differences or risk ratios. In this case, non‐convergence of covariate‐adjusted outcome regression models frequently occurs. Such problems can be circumvented by using the IPTW adjustment approach. © 2013 The authors. Statistics in Medicine published by John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here