z-logo
Premium
A goodness‐of‐fit test for the proportional odds regression model
Author(s) -
Fagerland Morten W.,
Hosmer David W.
Publication year - 2012
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.5645
Subject(s) - goodness of fit , statistics , odds , regression analysis , factor regression model , econometrics , test (biology) , logistic regression , mathematics , computer science , proper linear model , polynomial regression , paleontology , biology
We examine goodness‐of‐fit tests for the proportional odds logistic regression model—the most commonly used regression model for an ordinal response variable. We derive a test statistic based on the Hosmer–Lemeshow test for binary logistic regression. Using a simulation study, we investigate the distribution and power properties of this test and compare these with those of three other goodness‐of‐fit tests. The new test has lower power than the existing tests; however, it was able to detect a greater number of the different types of lack of fit considered in this study. Moreover, the test allows for the results to be summarized in a contingency table of observed and estimated frequencies, which is a useful supplementary tool to assess model fit. We illustrate the ability of the tests to detect lack of fit using a study of aftercare decisions for psychiatrically hospitalized adolescents. The test proposed in this paper is similar to a recently developed goodness‐of‐fit test for multinomial logistic regression. A unified approach for testing goodness of fit is now available for binary, multinomial, and ordinal logistic regression models. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here