z-logo
Premium
A bias‐corrected covariance estimate for improved inference with quadratic inference functions
Author(s) -
Westgate Philip M.
Publication year - 2012
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.5479
Subject(s) - inference , generalized estimating equation , covariance , estimating equations , quadratic equation , mathematics , statistics , standard error , analysis of covariance , gee , statistical inference , computer science , maximum likelihood , artificial intelligence , geometry
The method of quadratic inference functions (QIF) is an increasingly popular method for the analysis of correlated data because of its multiple advantages over generalized estimating equations (GEE). One advantage is that it is more efficient for parameter estimation when the working covariance structure for the data is misspecified. In the QIF literature, the asymptotic covariance formula is used to obtain standard errors. We show that in small to moderately sized samples, these standard error estimates can be severely biased downward, therefore inflating test size and decreasing coverage probability. We propose adjustments to the asymptotic covariance formula that eliminate finite‐sample biases and, as shown via simulation, lead to substantial improvements in standard error estimates, inference, and coverage. The proposed method is illustrated in application to a cluster randomized trial and a longitudinal study. Furthermore, QIF and GEE are contrasted via simulation and these applications. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here