Premium
Heart rate variability and susceptibility for sudden cardiac death: An example of multivariable optimal discriminant analysis
Author(s) -
Yarnold Paul R.,
Soltysik Robert C.,
Martin Gary J.
Publication year - 1994
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.4780131004
Subject(s) - linear discriminant analysis , logistic regression , multivariable calculus , discriminant , artificial intelligence , computer science , statistics , classifier (uml) , sample size determination , sample (material) , machine learning , data mining , pattern recognition (psychology) , mathematics , engineering , chemistry , chromatography , control engineering
The statistical classification problem motivates the search for an analytical procedure capable of classifying observations accurately into one of two or more groups on the basis of information with respect to one or more attributes, and constitutes a fundamental challenge for all scientific disciplines. Although there are many classification methodologies, only optimal discriminant analysis (ODA) explicitly guarantees that the discriminant classifier will maximize classification accuracy in the training sample. This paper presents the first example of multivariable ODA (MultiODA) in medicine, for an application in which we employ three attributes (age and two measures of heart rate variability) to predict susceptibility to sudden cardiac death for a sample of 45 patients. MultiODA outperformed logistic regression analysis on every classification performance index (overall accuracy, sensitivity, specificity, and positive and negative predictive values). In fact, the worst performance result achieved by MultiODA (in total sample or leave‐one‐out validity analysis) exceeded the best performance achieved by logistic regression analysis. We conclude that ODA offers promise as a methodology capable of improving the classification performance achieved by medical researchers, and that clearly merits investigation in future research.