z-logo
Premium
Adjustment for non‐differential misclassification error in the generalized linear model
Author(s) -
Liu Xinhua,
Liang KungYee
Publication year - 1991
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.4780100804
Subject(s) - covariate , categorical variable , computer science , statistics , generalized linear model , linear model , econometrics , latent variable , mathematics
It is well known that estimates of association between an outcome variable and a set of categorical covariates, some of which are measured with misclassification, tend to be biased upon application of the usual methods of estimation that ignore the classification error. We propose a method to adjust for misclassification in covariates when one applies the generalized linear model. In the case where one can observe some true covariates only through surrogates, we combine a latent class analysis with the approach to incorporate multiple surrogates into the model. We include discussion on the efficacy of repeated measurements which one can view as a special case of multiple surrogates with identical distribution. We provide two examples to demonstrate the applicability of the method and the efficacy of multiple replicates for a covariate subject to misclassification in a regression framework.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom