z-logo
Premium
Multinomial regression models based on continuation ratios
Author(s) -
Cox Christopher
Publication year - 1988
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.4780070309
Subject(s) - continuation , multinomial distribution , multinomial logistic regression , statistics , econometrics , multinomial probit , mathematics , variable (mathematics) , ordinal regression , computer science , mathematical analysis , programming language
Abstract This paper concerns continuation ratio models for multinomial responses. These are conditional probabilities used in logit models to define the dependence of the multinomial proportions on explanatory variables and unknown parameters. A distinctive feature of these models is that if one models the various continuation ratios separately, then the resulting estimates and test statistics are asymptotically independent. This allows the partitioning of likelihood ratio statistics and the search for effects in specific categories of an ordinal response variable. Models that use the same parameters for different continuation ratios are suitable for estimating more global differences. The fitting of these models to actual data is illustrated, including an example from a pharmaceutical study. The results show that different models are suitable for modelling complementary sorts of differences between multinomial response distributions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here