Premium
A functional multiple imputation approach to incomplete longitudinal data
Author(s) -
He Yulei,
Yucel Recai,
Raghunathan Trivellore E.
Publication year - 2011
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.4201
Subject(s) - imputation (statistics) , missing data , computer science , longitudinal data , econometrics , statistics , data mining , mathematics , machine learning
Abstract In designed longitudinal studies, information from the same set of subjects are collected repeatedly over time. The longitudinal measurements are often subject to missing data which impose an analytic challenge. We propose a functional multiple imputation approach modeling longitudinal response profiles as smooth curves of time under a functional mixed effects model. We develop a Gibbs sampling algorithm to draw model parameters and imputations for missing values, using a blocking technique for an increased computational efficiency. In an illustrative example, we apply a multiple imputation analysis to data from the Panel Study of Income Dynamics and the Child Development Supplement to investigate the gradient effect of family income on children's health status. Our simulation study demonstrates that this approach performs well under varying modeling assumptions on the time trajectory functions and missingness patterns. Copyright © 2011 John Wiley & Sons, Ltd.