z-logo
Premium
Multiple imputation using chained equations: Issues and guidance for practice
Author(s) -
White Ian R.,
Royston Patrick,
Wood Angela M.
Publication year - 2010
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.4067
Subject(s) - imputation (statistics) , categorical variable , computer science , missing data , data mining , machine learning
Multiple imputation by chained equations is a flexible and practical approach to handling missing data. We describe the principles of the method and show how to impute categorical and quantitative variables, including skewed variables. We give guidance on how to specify the imputation model and how many imputations are needed. We describe the practical analysis of multiply imputed data, including model building and model checking. We stress the limitations of the method and discuss the possible pitfalls. We illustrate the ideas using a data set in mental health, giving Stata code fragments. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here