Premium
A weighted combination of pseudo‐likelihood estimators for longitudinal binary data subject to non‐ignorable non‐monotone missingness
Author(s) -
Troxel Andrea B.,
Lipsitz Stuart R.,
Fitzmaurice Garrett M.,
Ibrahim Joseph G.,
Sinha Debajyoti,
Molenberghs Geert
Publication year - 2010
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.3867
Subject(s) - estimator , missing data , monotone polygon , binary data , parametric statistics , computer science , statistics , estimating equations , binary number , mathematics , independence (probability theory) , geometry , arithmetic
For longitudinal binary data with non‐monotone non‐ignorably missing outcomes over time, a full likelihood approach is complicated algebraically, and with many follow‐up times, maximum likelihood estimation can be computationally prohibitive. As alternatives, two pseudo‐likelihood approaches have been proposed that use minimal parametric assumptions. One formulation requires specification of the marginal distributions of the outcome and missing data mechanism at each time point, but uses an ‘independence working assumption,’ i.e. an assumption that observations are independent over time. Another method avoids having to estimate the missing data mechanism by formulating a ‘protective estimator.’ In simulations, these two estimators can be very inefficient, both for estimating time trends in the first case and for estimating both time‐varying and time‐stationary effects in the second. In this paper, we propose the use of the optimal weighted combination of these two estimators, and in simulations we show that the optimal weighted combination can be much more efficient than either estimator alone. Finally, the proposed method is used to analyze data from two longitudinal clinical trials of HIV‐infected patients. Copyright © 2010 John Wiley & Sons, Ltd.