z-logo
Premium
Meta‐regression with partial information on summary trial or patient characteristics
Author(s) -
Hemming K.,
Hutton J. L.,
Maguire M. G.,
Marson A. G.
Publication year - 2010
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.3848
Subject(s) - covariate , missing data , statistics , regression analysis , bayesian probability , econometrics , computer science , random effects model , regression , mathematics , meta analysis , medicine
We present a model for meta‐regression in the presence of missing information on some of the study level covariates, obtaining inferences using Bayesian methods. In practice, when confronted with missing covariate data in a meta‐regression, it is common to carry out a complete case or available case analysis. We propose to use the full observed data, modelling the joint density as a factorization of a meta‐regression model and a conditional factorization of the density for the covariates. With the inclusion of several covariates, inter‐relations between these covariates are modelled. Under this joint likelihood‐based approach, it is shown that the lesser assumption of the covariates being Missing At Random is imposed, instead of the more usual Missing Completely At Random (MCAR) assumption. The model is easily programmable in WinBUGS, and we examine, through the analysis of two real data sets, sensitivity and robustness of results to the MCAR assumption. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here