Premium
Systematically missing confounders in individual participant data meta‐analysis of observational cohort studies
Author(s) -
Daniel Jakson,
Ian R. White,
John B. Kostis,
A. C. Wilson,
Aaron R. Folsom,
Kevin ChienChang Wu,
Lloyd E. Chambless,
U. Benderley,
Uri Goldbourt,
Johann Willeit,
Stefan Kiechl,
J. W. G. Yarnell,
P M Sweetnam,
P. C. Elmwood,
M. Cushman,
Bruce M. Psaty,
Russell P. Tracy,
Anne TybjærgHansen,
F. Haverkate,
Moniek P.M. de Maat,
Simon G. Thompson,
F.G.R. Fowkes,
Amanda Lee,
Fraser Smith,
Veikko Salomaa,
Kennet Harald,
Vesa Rasi,
Elina Vahtera,
Jari Lahti,
R. D'Agostino,
W B Kannel,
Peter W.F. Wilson,
Geoffrey H. Tofler,
Daniel Levy,
Roberto Marchioli,
Franco Valagussa,
Annika Rosengren,
L. Wilhemsen,
Georgios Lappas,
H. Eriksson,
Peter Cremer,
D. Nagel,
J. David Curb,
Beatriz L. Rodríguez,
Ken Yano,
J T Salonen,
K. Nyyssönen,
TomiPekka Tuomainen,
Bo Hedblad,
Gunnar Engström,
G. Berglund,
Hannelore Loewel,
Wolfgang Köenig,
HansWerner Hense,
T W Meade,
J. A. Copper,
Bianca De Stavola,
Clare Knottenbelt,
G. J. Miller,
Jackie A. Cooper,
K. A. Bauer,
R D Rosenberg,
Shin-ichi Sato,
Akihiko Kitamura,
Yusuke Naito,
Hiroyasu Iso,
T. Palosou,
Pierre Ducimetière,
Philippe Amouyel,
Dominique Arveiler,
A. E. Evans,
Jean Ferrières,
I. JuhanVague,
A. Bingham,
H. Schulte,
Gerd Assmann,
Bernard Cantin,
Benoı̂t Lamarche,
JeanPhilippe Després,
Gilles R. Dagenais,
Hugh TunstallPedoe,
G.D.O. Lowe,
Mark Woodward,
Y. Ben-Shlomo,
George Davey Smith,
Vincenzo Palmieri,
J. L. Yeh,
Alicja R. Rudnicka,
Patrick J. Brennan,
P. Ridker,
F. Rodeghiero,
Alberto Tosetto,
J. Shepherd,
Donna O. Lowe,
I. Ford,
Michele Robertson,
Eric J. Brunner,
M. J. Shipley,
E. J.M. Fesken,
Emanuele Di Angelantonio
Publication year - 2009
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.3540
Subject(s) - confounding , observational study , bivariate analysis , medicine , cohort study , cohort , meta analysis , demography , incidence (geometry) , propensity score matching , statistics , mathematics , geometry , sociology
One difficulty in performing meta‐analyses of observational cohort studies is that the availability of confounders may vary between cohorts, so that some cohorts provide fully adjusted analyses while others only provide partially adjusted analyses. Commonly, analyses of the association between an exposure and disease either are restricted to cohorts with full confounder information, or use all cohorts but do not fully adjust for confounding. We propose using a bivariate random‐effects meta‐analysis model to use information from all available cohorts while still adjusting for all the potential confounders. Our method uses both the fully adjusted and the partially adjusted estimated effects in the cohorts with full confounder information, together with an estimate of their within‐cohort correlation. The method is applied to estimate the association between fibrinogen level and coronary heart disease incidence using data from 154 012 participants in 31 cohorts. † One hundred and ninety‐nine participants from the original 154 211 withdrew their consent and have been removed from this analysis. Copyright © 2009 John Wiley & Sons, Ltd.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom