Premium
Robust outbreak surveillance of epidemics in Sweden
Author(s) -
Frisén M.,
Andersson E.,
Schiöler L.
Publication year - 2009
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.3483
Subject(s) - outbreak , incidence (geometry) , computer science , statistics , data mining , econometrics , medicine , virology , mathematics , geometry
Outbreak detection is of interest in connection with several diseases and syndromes. The aim is to detect the progressive increase in the incidence as soon as possible after the onset of the outbreak. A semiparametric method is applied to Swedish data on tularaemia and influenza. The method is constructed to detect a change from a constant level to a monotonically increasing incidence. If seasonal effects are present, the residuals from a model incorporating these can be used. The properties of the method are evaluated by application to Swedish data on tularaemia and influenza and by simulations. The suggested method is compared with subjective judgments as well as with other algorithms. The conclusion is that the method works well. A user‐friendly computer program is described. Copyright © 2008 John Wiley & Sons, Ltd.