z-logo
Premium
Modeling the association of bivariate interval‐censored data using the copula approach
Author(s) -
Bogaerts Kris,
Lesaffre Emmanuel
Publication year - 2008
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.3438
Subject(s) - copula (linguistics) , bivariate analysis , statistics , econometrics , mathematics , computer science
In a survival study, it may not be possible to record the exact event time but only that the event has occurred between two time points or still has to occur, leading to interval‐censored survival times. Recently, Sun et al. ( Scand. J. Stat. 2006; 33 (4):637–649) suggested to fit a Clayton copula with nonparametric marginal distributions to estimate the association for bivariate interval‐censored failure data. We propose here to model the marginal distributions with an accelerated failure time model with a flexible error term as suggested by Komárek et al. ( J. Comput. Graph. Stat. 2005; 14 (3):726–745) in combination with a one parameter copula. In addition, we allow the association parameter of the copula to depend on covariates. The performance of our method is illustrated by an extensive simulation study and is applied to tooth emergence data of permanent teeth measured on 4468 children from a longitudinal dental study. Copyright © 2008 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here