Premium
Assessing the utility of public health surveillance using specificity, sensitivity, and lives saved
Author(s) -
Kleinman Ken P.,
Abrams Allyson M.
Publication year - 2008
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.3269
Subject(s) - computer science , public health surveillance , public health , sensitivity (control systems) , data mining , data science , risk analysis (engineering) , medicine , pathology , electronic engineering , engineering
In modern surveillance of public health, data may be reported in a timely fashion and include spatial data on cases in addition to the time of their occurrence. This has lead to many recent developments in statistical methods to detect events of public health importance. However, there has been relatively little work about how to compare such methods. One powerful rationale for performing surveillance is earlier detection of events of public health significance; previous evaluation tools have focused on metrics that include the timeliness of detection in addition to sensitivity and specificity. However, such metrics have not accounted for the number of persons affected by the events. We re‐examine the rationale for this surveillance and conclude that earlier detection is preferred because it can prevent additional morbidity and mortality. On the basis this observation, we propose evaluating the number of cases prevented by each detection method, and include this information in assessing the value of different detection methods. Using this approach incorporates more information about the events and the detection and provides a sound basis for making decisions about which detection methods to employ. Copyright © 2008 John Wiley & Sons, Ltd.