Premium
Baseline patient characteristics and mortality associated with longitudinal intervention compliance
Author(s) -
Lin Julia Y.,
Ten Have Thomas R.,
Bogner Hillary R.,
Elliott Michael R.
Publication year - 2007
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.2909
Subject(s) - latent class model , compliance (psychology) , baseline (sea) , randomized controlled trial , intervention (counseling) , class (philosophy) , medicine , physical therapy , computer science , psychology , artificial intelligence , psychiatry , machine learning , social psychology , oceanography , geology
Lin et al. (http://www.biostatsresearch.com/upennbiostat/papers/, 2006) proposed a nested Markov compliance class model in the Imbens and Rubin compliance class model framework to account for time-varying subject noncompliance in longitudinal randomized intervention studies. We use superclasses, or latent compliance class principal strata, to describe longitudinal compliance patterns, and time-varying compliance classes are assumed to depend on the history of compliance. In this paper, we search for good subject-level baseline predictors of these superclasses and also examine the relationship between these superclasses and all-cause mortality. Since the superclasses are completely latent in all subjects, we utilize multiple imputation techniques to draw inferences. We apply this approach to a randomized intervention study for elderly primary care patients with depression.