z-logo
Premium
Baseline patient characteristics and mortality associated with longitudinal intervention compliance
Author(s) -
Lin Julia Y.,
Ten Have Thomas R.,
Bogner Hillary R.,
Elliott Michael R.
Publication year - 2007
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.2909
Subject(s) - latent class model , compliance (psychology) , baseline (sea) , randomized controlled trial , intervention (counseling) , class (philosophy) , medicine , physical therapy , computer science , psychology , artificial intelligence , psychiatry , machine learning , social psychology , oceanography , geology
Lin et al. (http://www.biostatsresearch.com/upennbiostat/papers/, 2006) proposed a nested Markov compliance class model in the Imbens and Rubin compliance class model framework to account for time-varying subject noncompliance in longitudinal randomized intervention studies. We use superclasses, or latent compliance class principal strata, to describe longitudinal compliance patterns, and time-varying compliance classes are assumed to depend on the history of compliance. In this paper, we search for good subject-level baseline predictors of these superclasses and also examine the relationship between these superclasses and all-cause mortality. Since the superclasses are completely latent in all subjects, we utilize multiple imputation techniques to draw inferences. We apply this approach to a randomized intervention study for elderly primary care patients with depression.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom