Premium
A missing data approach to semi‐competing risks problems
Author(s) -
Dignam James J.,
Wieand Kelly,
Rathouz Paul J.
Publication year - 2006
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.2582
Subject(s) - event (particle physics) , marginal distribution , computer science , econometrics , statistics , mathematics , random variable , physics , quantum mechanics
For event time data involving multiple mutually exclusive competing causes of failure, classic competing risks results show that marginal survival distributions are not identifiable. In a related instance, one or more failure modes may be observed provided that the failure events occur in a specific order. In such situations, sometimes referred to as semi‐competing risks problems, the observations may under realistic assumptions lend information about parameters of interest that would be nonidentifiable in the strict competing risks case. Here, we present an approach that makes use of partially observable multiple modes of failures to obtain an estimate of the marginal distribution of one event type that may occur prior to the occurrence of another event type or be precluded by it. We apply the proposed method to the problem of estimating the distribution of time to tumour recurrence at specific sites among breast cancer patients participating in randomized clinical trials. Copyright © 2006 John Wiley & Sons, Ltd.