z-logo
Premium
Bagging survival trees
Author(s) -
Hothorn Torsten,
Lausen Berthold,
Benner Axel,
RadespielTröger Martin
Publication year - 2004
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.1593
Subject(s) - ha statistics
Predicted survival probability functions of censored event free survival are improved by bagging survival trees. We suggest a new method to aggregate survival trees in order to obtain better predictions for breast cancer and lymphoma patients. A set of survival trees based on B bootstrap samples is computed. We define the aggregated Kaplan–Meier curve of a new observation by the Kaplan–Meier curve of all observations identified by the B leaves containing the new observation. The integrated Brier score is used for the evaluation of predictive models. We analyse data of a large trial on node positive breast cancer patients conducted by the German Breast Cancer Study Group and a smaller ‘pilot’ study on diffuse large B‐cell lymphoma, where prognostic factors are derived from microarray expression values. In addition, simulation experiments underline the predictive power of our proposal. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom