z-logo
Premium
Late detection of breast and colorectal cancer in Minnesota counties: an application of spatial smoothing and clustering
Author(s) -
J. Thomas Avis,
P. Carlin Bradley
Publication year - 2002
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/sim.1215
Subject(s) - scan statistic , smoothing , cluster analysis , covariate , breast cancer , outlier , statistics , statistic , bayesian probability , computer science , econometrics , medicine , demography , cancer , mathematics , sociology
Cancers detected at a later disease stage are associated with significantly higher mortality risk. Lack of uniformity in county‐level cancer detection rates is thus of substantial interest to state health departments and other public health professionals. In this paper, we perform several spatial analyses of breast and colorectal cancer detection data for Minnesota counties for 1995–1997. We look for outliers and clusters in the late detection rates using a number of techniques: (i) applying various mapping schemes, (ii) smoothing the data using Bayesian methods implemented via Markov chain Monte Carlo, and (iii) applying maximum likelihood techniques to test for the presence of clusters and to identify the most likely clusters Our results suggest a fairly uniform spatial pattern in both sets of detection rates. Spatially smoothed rates did not reveal clusters of counties with significantly higher late detection risk, nor were county‐level covariates (such as income, education, and race) particularly helpful in explaining the rates. However, our spatial clustering approach (using the scan statistic) did produce statistically significant clusters of counties which may indicate differences of practical importance for public health. Copyright © 2003 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here