Premium
Study of anodizing process on aluminium foam to improve the corrosion behavior
Author(s) -
Rossi Stefano,
Bizzotto Mirco,
Deflorian Flavio,
Fedel Michele
Publication year - 2019
Publication title -
surface and interface analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.52
H-Index - 90
eISSN - 1096-9918
pISSN - 0142-2421
DOI - 10.1002/sia.6610
Subject(s) - anodizing , materials science , corrosion , aluminium , metallurgy , pitting corrosion , oxide , composite material , current density , layer (electronics) , aluminium oxide , physics , quantum mechanics
Aluminium foam is obtained by the production of air into metallic melt. This material shows a very low density together with good mechanical properties, high impact energy absorption, and fire resistance. Different production ways to obtain metallic foam are possible. Considering the cost, the Alporas process is particularly interesting. By means of this production method, a block of metallic foam with close cells is obtained. By slicing, foam panels are obtained. The mechanical cut promotes the formation of an open cells texture on the surface. In this last case, the complex morphology of aluminium foam could be a critical point considering the corrosion behavior in aggressive environments, where localized corrosion phenomena, as pitting or crevice corrosion, are likely to occur. The anodizing treatment is one of the most used methods to improve the corrosion resistance of aluminium and aluminium alloys. The aim of this paper is to perform an anodization treatment to enhance the corrosion resistance of aluminium foam. Constant voltage anodization (12 V for 60 min) and pulsed current anodization (0.04 A/cm 2 for 60 seconds and 0.01 A/cm 2 for 15 seconds, repeated for 15 cycles) have been carried out in 15 wt% H 2 SO 4 at 20°C. The anodized samples are observed in cross section by optical and electronic microscopes to investigate the structure of the anodic oxide layer and the presence of defects and to measure the thickness of the layer. The corrosion protection performance and the compactness of layers are evaluated using acetic salt spray test and electrochemical impedance spectroscopy.