z-logo
Premium
Surface analysis of epitaxially grown GeSn alloys with Sn contents between 15% and 18%
Author(s) -
Kormoš L.,
Kratzer M.,
Kostecki K.,
Oehme M.,
Šikola T.,
Kasper E.,
Schulze J.,
Teichert C.
Publication year - 2017
Publication title -
surface and interface analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.52
H-Index - 90
eISSN - 1096-9918
pISSN - 0142-2421
DOI - 10.1002/sia.6134
Subject(s) - tin , epitaxy , materials science , molecular beam epitaxy , germanium , metastability , surface energy , analytical chemistry (journal) , layer (electronics) , spectroscopy , phase (matter) , nanotechnology , chemistry , optoelectronics , metallurgy , composite material , silicon , chromatography , physics , organic chemistry , quantum mechanics
Metastable Germanium–tin (GeSn) layers with rather high Sn content between 15% and 18% grown on Si substrates by molecular beam epitaxy were analyzed for the morphological changes on a surface before and after reaching critical layer parameters (thickness, Sn content, and growth temperature) for surface roughening. Atomic‐force microscopy investigations were performed as a function of thickness and separately for varying Sn concentrations in the GeSn layer. Epitaxial growth of metastable, uniform GeSn (15% Sn content) layers is obtained up to a critical thickness which increases from about 80 to above 200 nm by reducing the nominal growth temperature from 160 to 140 °C. Phase separation of the complete layer into tin‐rich surface protrusions and a Ge‐rich matrix takes place beyond the critical thickness. This surface roughening via phase separation was not observed in earlier investigations with lower Sn concentrations (<6%). Tin depletion in the GeSn matrix was confirmed by using energy‐dispersive X‐ray spectroscopy measurements showing residual Sn concentration below 5%. Additionally, creation of droplets with high concentration of tin on the surfaces was confirmed by energy‐dispersive X‐ray spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom