Premium
C K‐edge NEXAFS study of fluorocarbon formation on carbon anodes in molten NaF–AlF 3 –CaF 2
Author(s) -
Haverkamp Richard G.,
Cowie Bruce C. C.
Publication year - 2013
Publication title -
surface and interface analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.52
H-Index - 90
eISSN - 1096-9918
pISSN - 0142-2421
DOI - 10.1002/sia.5332
Subject(s) - anode , fluorocarbon , overpotential , electrolysis , xanes , chemistry , chemical engineering , graphite , wetting , materials science , dewetting , carbon fibers , electrochemistry , electrode , composite material , composite number , electrolyte , physics , quantum mechanics , spectroscopy , engineering
Operational instability from processes occurring at the anode during the production of aluminum in the commercial Hall‐Héroult process may lead to an increase in undesirable fluorocarbon emissions, higher energy use, and shorter plant life. One contribution to this instability may be the possible formation of a fluorocarbon film at the electrode interface. Here, the surface composition of graphite anodes after electrolysis in molten NaF–AlF 3 –CaF 2 at 990 °C is investigated for evidence of fluorocarbon formation using C K‐edge near edge X‐ray absorption fine structure. Fluorocarbon is identified on an anode surface after prolonged anode effect (very high overpotential with increased cell resistance) and also on an anode surface after normal electrolysis without anode effect. This provides evidence that fluorocarbon formation may occur prior to anode effect lowering the surface tension of the anode and therefore resulting in dewetting to contribute to the onset of the anode effect. Confirmation that such compounds form furthers our understanding of electrochemical reactions of graphite with fluoride and of the fundamental processes that occur in an aluminum smelter cell. Copyright © 2013 John Wiley & Sons, Ltd.