z-logo
Premium
Formation and tribological properties of two‐component ultrathin ionic liquid films on Si
Author(s) -
Pu Jibin,
Liu Xiufang,
Wang Liping,
Xue Qunji
Publication year - 2011
Publication title -
surface and interface analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.52
H-Index - 90
eISSN - 1096-9918
pISSN - 0142-2421
DOI - 10.1002/sia.3718
Subject(s) - tribology , tribometer , ionic liquid , materials science , x ray photoelectron spectroscopy , coating , phase (matter) , ellipsometry , adhesive , chemical engineering , nanotechnology , thin film , composite material , layer (electronics) , chemistry , organic chemistry , engineering , catalysis
Several single‐component and two‐component imidazolium ionic liquids (ILs) ultrathin films were formed on Si substrates by a dip‐coating and heat treatment process. The formation and surface properties of the films were analyzed by means of ellipsometric thickness measurement, X‐ray photoelectron spectra and atomic force microscope. The adhesive and nanotribological behaviors of the films were evaluated by a homemade colloidal probe. A ball‐on‐plate tribometer was used to test the microtribological performances of these films. As a result, the two‐component ILs ultrathin film containing 80% solid‐like ILs phase shows more homogenous surface morphologies and optimal micro/nano‐tribological properties as compared to single‐component ILs films, which is ascribed to a synergic effect between the steady solid‐like ILs phase as the backbone and the proper amount of flowable liquid‐like ILs phase. By studying the influence of various solid/liquid ILs ratios on tribological properties of the two‐component ILs films, we might find the way to design ILs films with excellent comprehensive tribological properties. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here