Premium
Effects of anodic spark oxidation by pulse power on titanium substrates
Author(s) -
Park Il Song,
Lee Min Ho
Publication year - 2011
Publication title -
surface and interface analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.52
H-Index - 90
eISSN - 1096-9918
pISSN - 0142-2421
DOI - 10.1002/sia.3686
Subject(s) - anatase , titanium , electrolyte , materials science , anode , surface roughness , electrochemistry , chemical engineering , phase (matter) , direct current , rutile , metallurgy , chemistry , electrode , composite material , organic chemistry , voltage , physics , photocatalysis , quantum mechanics , engineering , catalysis
The characteristics of the oxide layer of titanium generated by anodic spark oxidation are affected significantly by the process variables. In this study, electrochemical treatments were performed while applying a direct current, a pulse current, and a reverse pulse current during anodic spark oxidation. A mixed solution of 0.015 M DL‐α‐GP (DL‐α‐glycerophosphate disodium salt) and 0.2 M CA (calcium acetate) was used as the electrolyte. The pore size generated after anodic spark oxidation was smallest in the group exposed to the reverse pulse current followed in order by the pulse current and direct current. Anatase was the major crystal phase of the TiO 2 produced on the surfaces subjected to 280 V, and the rutile phase was additionally detected in the group subjected to 320 V. The crystals precipitated on the surface after the hydrothermal treatment were hydroxyapatite (HA) crystals that had a polygonal bar‐shaped needle structure. Good activity was observed in the 320‐V pulse treated group, in which very thin needle‐shaped crystals were observed after immersing the samples in Hanks' solution for 4 weeks. The cell viability was increased greatly by anodic spark oxidation, and the surface roughness was also increased. It is believed that the surface treated using a pulse current has excellent characteristics, making it suitable for applications in biomaterials. Copyright © 2010 John Wiley & Sons, Ltd.