z-logo
Premium
Surface and electrochemical analysis for the understanding of TiO 2 nanopores/nanotubes changes in post‐elaboration treatment
Author(s) -
Manole Claudiu Constantin,
Pirvu Cristian
Publication year - 2011
Publication title -
surface and interface analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.52
H-Index - 90
eISSN - 1096-9918
pISSN - 0142-2421
DOI - 10.1002/sia.3685
Subject(s) - nanopore , materials science , electrolyte , anodizing , electrochemistry , chemical engineering , nanotube , dielectric spectroscopy , nanotechnology , nanostructure , sonication , carbon nanotube , chemistry , composite material , electrode , aluminium , engineering
The electrochemical stability of TiO 2 nanoarchitecture fabricated in fluoride electrolyte presented in this paper is related to 2D and 3D geometries that present a shift from nanopores toward nanotubes. The fabrication conditions involve a 60 V applied voltage for 2 hours of anodizing in order to create the ordered structures, in a mixture of low‐water glycerol electrolyte and fluoride. With the use of different ultrasonication times, a variety of nanotubes/nanopores were observed. The surface interfacial aspects were investigated mainly by surface microscopy and hydrophilic/hydrophobic balance for the grown structures ultrasonicated at various periods of time. The electrochemical behavior of the nanotube‐structured surface was performed by potentiodynamic evaluation and electrochemical impedance spectroscopy in a simulated body fluid solution. As a most important result, all surface analysis and electrochemical data interpretation permitted the proposition of a model for elaboration of different nanostructures from nanopores to nanotubes. These different surface nanoarchitectures were obtained as a result of ultrasonication at various periods of time. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom