z-logo
Premium
Crack‐free sol‐gel coatings for protection of AA1050 aluminium alloy
Author(s) -
Feng Z.,
Liu Y.,
Thompson G. E.,
Skeldon P.
Publication year - 2010
Publication title -
surface and interface analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.52
H-Index - 90
eISSN - 1096-9918
pISSN - 0142-2421
DOI - 10.1002/sia.3162
Subject(s) - chromate conversion coating , aluminium , shrinkage , alloy , materials science , corrosion , sol gel , conversion coating , condensation , hydrolysis , metallurgy , chemical engineering , composite material , chemistry , organic chemistry , nanotechnology , physics , engineering , thermodynamics
Abstract Organically modified sol‐gel coatings have been investigated as potential replacements for chromate conversion treatments of an AA1050 aluminium alloy. The coatings were prepared by combination of a completely hydrolysable precursor of tetra‐ n ‐propoxyzirconium (TPOZ), with a partially hydrolysable precursor of glycidoxypropyltrimethoxysilane (GPTMS). GPTMS contains an organic functional group, which is retained in the sol‐gel coatings after the hydrolysis–condensation process. Different GPTMS/TPOZ ratios and withdrawal speeds were studied. Coatings produced using a low GPTMS/TPOZ ratio and a high withdrawal speed generated significant cracks due to the shrinkage of the coatings, with no corrosion protection of the alloy. It was found that increase of organic moieties reduced the shrinkage of the coatings and the tendency for crack formation. By control of process parameters and ratios of organic and inorganic moieties, crack‐free sol‐gel coatings above 1 µm thick, with improved corrosion protection, can be produced on the alloy surface. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here