Premium
Ultrasound‐assisted oxidation of tungsten in oxygen plasma: the early stages of the oxide film growth
Author(s) -
Romanyuk Andriy,
Steiner Roland,
Melnik Viktor,
Thommen Verena
Publication year - 2006
Publication title -
surface and interface analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.52
H-Index - 90
eISSN - 1096-9918
pISSN - 0142-2421
DOI - 10.1002/sia.2386
Subject(s) - x ray photoelectron spectroscopy , tungsten , secondary ion mass spectrometry , oxygen , oxide , chemistry , analytical chemistry (journal) , foil method , layer (electronics) , thin film , chemical engineering , materials science , ion , nanotechnology , composite material , chromatography , organic chemistry , engineering
The effect of ultrasonic vibrations applied in situ on the formation of W–WO interface during the exposure of a pure tungsten foil to a low‐temperature oxygen plasma is investigated by photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS). The tungsten surface was exposed to oxygen plasma at different time intervals and the evolution of the interface formation was studied by angle‐resolved XPS. We show that oxidation without ultrasonic vibrations leads to the formation of a thin oxide film whose growth kinetics is governed by an island growth mechanism. On the other hand, oxide growth in the presence of ultrasonic treatment (UST) appears to follow a layer‐by‐layer growth mode with a distinctly sharper W–WO interface. TOF‐SIMS analysis in this case revealed a reduced amount of water bonded in the film, which suggests an increase in the film's packing density. Copyright © 2006 John Wiley & Sons, Ltd.