z-logo
Premium
Study of hydration layers near a hydrophilic surface in water through AFM imaging
Author(s) -
Peng Changsheng,
Song Shaoxian,
Fort Tomlinson
Publication year - 2006
Publication title -
surface and interface analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.52
H-Index - 90
eISSN - 1096-9918
pISSN - 0142-2421
DOI - 10.1002/sia.2368
Subject(s) - atomic force microscopy , aqueous solution , tapping , layer (electronics) , surface (topology) , materials science , contact angle , chemical engineering , chemistry , nanotechnology , composite material , organic chemistry , acoustics , geometry , mathematics , engineering , physics
In this work, a hydrophilic silica plate exposed in air, and immersed in an aqueous solution was studied through atomic force microscopy (AFM) imaging in contact‐ and tapping‐mode operations. It was experimentally found that the tapping‐mode AFM images of the silica surface were different when it was immersed in an aqueous solution from those when it was exposed in air. The former showed fewer topographic features. However, the contact‐mode AFM images of the silica surface were almost uninfluenced by the medium in which the surface was placed. This phenomenon might be attributed to the existence of hydration layers near the silica surface in the aqueous solution. The layers are like a large sheet on the surface that hides the details, so that an AFM tip in the tapping mode can read only the hydration layer and therefore image only the rough outline of the surface. This result might suggest the existence of hydration layers near a hydrophilic surface immersed in water. Copyright © 2006 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here