Premium
Surface (XPS, SIMS) chemical investigation on poly(pyrrole‐3‐acetic acid) films electrosynthesized on Ti and TiAlV substrates for the development of new bioactive substrates
Author(s) -
Giglio E. De,
Calvano C. D.,
Losito I.,
Sabbatini L.,
Zambonin P. G.,
Torrisi A.,
Licciardello A.
Publication year - 2005
Publication title -
surface and interface analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.52
H-Index - 90
eISSN - 1096-9918
pISSN - 0142-2421
DOI - 10.1002/sia.2053
Subject(s) - x ray photoelectron spectroscopy , acetic acid , polypyrrole , pyrrole , chemistry , secondary ion mass spectrometry , protonation , polymer , polymer chemistry , carboxylate , organic chemistry , chemical engineering , ion , polymerization , engineering
Electropolymerization of pyrrole‐3‐acetic acid was performed by cyclic voltammetry on titanium and Ti90Al6V4 substrates with the aim of developing a multilayer structure for applications in advanced biomaterials. The polymeric films obtained were characterized by both XPS and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). Information on the poly(pyrrole‐3‐acetic acid) (PPy‐3‐acetic) surface structure was achieved by a detailed XPS analysis of C 1s and N 1s signals. The number of COOH groups was quantified by XPS coupled to a chemical derivatization reaction in which esterification with trifluoroethanol was exploited so that the presence of fluorine (or the CF 3 component in C 1s spectra) could be used as a marker for COOH groups. As a result, it was found that more than 90% of the monomer units along PPy‐3‐acetic chains bear carboxylic functionalities, of which 60% are protonated and 40% are present as carboxylate groups. Some decarboxylation occurs with film ageing. The PPy‐3‐acetic films were also investigated by ToF‐SIMS in the negative ion mode, thus obtaining, for the first time, interesting information on the structure of the top surface layers of a polymer belonging to the polypyrrole family. In particular, clusters of peaks related to PPy‐3‐acetic oligomers were detected and the decarboxylation phenomenon on top of the polymer surface was confirmed. Copyright © 2005 John Wiley & Sons, Ltd.