z-logo
Premium
Segregation in zirconia: equilibrium versus non‐equilibrium segregation
Author(s) -
Nowotny J.,
Sorrell C. C.,
Bak T.
Publication year - 2005
Publication title -
surface and interface analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.52
H-Index - 90
eISSN - 1096-9918
pISSN - 0142-2421
DOI - 10.1002/sia.2023
Subject(s) - cubic zirconia , yttria stabilized zirconia , materials science , thermodynamic equilibrium , work (physics) , surface energy , thermodynamics , phase (matter) , chemical physics , chemistry , metallurgy , composite material , physics , ceramic , organic chemistry
The present work considers the differences between the following two phenomena: equilibrium segregation , which is a thermodynamic phenomenon where the driving force is excess interfacial energy; and non‐equilibrium segregation , which can be produced by phenomenological shocks applied to the solid surface. Fully stabilized cubic yttria‐stabilized zirconia (YSZ) is used as the exemplar for these considerations. Equilibrium segregation in YSZ results in enrichment of the surface and near‐surface layers in constituent elements, typically yttria and impurities. This segregation is an intrinsic material property and has an impact on the performance of zirconia at elevated temperatures. On the other hand, non‐equilibrium segregation leads to a complex distribution of properties (structure and concentration gradients) that are determined by the experimental procedures used rather than being a material property. However, such non‐equilibrium segregation can result in localized structural changes. The present paper also considers the effect of the gas phase on surface properties of metal oxides, including YSZ, and the surface dynamics of YSZ at temperatures below that required to reach equilibrium. Copyright © 2005 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here