z-logo
open-access-imgOpen Access
Simple SMS spam filtering on independent mobile phone
Author(s) -
Taufiq Nuruzzaman M.,
Lee Changmoo,
Abdullah Mohd. Fikri Azli bin,
Choi Deokjai
Publication year - 2012
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0122
pISSN - 1939-0114
DOI - 10.1002/sec.577
Subject(s) - computer science , mobile phone , naive bayes classifier , short message service , filter (signal processing) , android (operating system) , usability , machine learning , artificial intelligence , computer network , support vector machine , human–computer interaction , telecommunications , operating system , computer vision
The amount of Short Message Service (SMS) spam is increasing. Various solutions to filter SMS spam on mobile phones have been proposed. Most of these use Text Classification techniques that consist of training, filtering, and updating processes. However, they require a computer or a large amount of SMS data in advance to filter SMS spam, especially for the training. This increases hardware maintenance and communication costs. Thus, we propose to filter SMS spam on independent mobile phones using Text Classification techniques. The training, filtering, and updating processes are performed on an independent mobile phone. The mobile phone has storage, memory and CPU limitations compared with a computer. As such, we apply a probabilistic Naïve Bayes classifier using word occurrences for screening because of its simplicity and fast performance. Our experiment on an Android mobile phone shows that it can filter SMS spam with reasonable accuracy, minimum storage consumption, and acceptable processing time without support from a computer or using a large amount of SMS data for training. Thus, we conclude that filtering SMS spam can be performed on independent mobile phones. We can reduce the number of word attributes by almost 50% without reducing accuracy significantly, using our usability‐based approach. Copyright © 2012 John Wiley & Sons, Ltd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here