Premium
Worker burnout: A dynamic model with implications for prevention and control
Author(s) -
Homer Jack B.
Publication year - 1985
Publication title -
system dynamics review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.491
H-Index - 57
eISSN - 1099-1727
pISSN - 0883-7066
DOI - 10.1002/sdr.4260010105
Subject(s) - burnout , productivity , work (physics) , limit (mathematics) , process (computing) , relaxation (psychology) , control (management) , stability (learning theory) , lever , psychology , control theory (sociology) , social psychology , economics , computer science , engineering , management , mathematics , clinical psychology , mechanical engineering , machine learning , macroeconomics , operating system , mathematical analysis
This paper explores the dynamics of worker burnout, a process in which a hard‐working individual becomes increasingly exhausted, frustrated, and unproductive. The author's own two‐year experience with repeated cycles of burnout is qualitatively reproduced by a small system dynamics model that portrays the underlying psychology of workaholism. Model tests demonstrate that the limit cycle seen in the base run can be stabilized through techniques that diminish work‐related stress or enhance relaxation. These stabilizing techniques also serve to raise overall productivity, since they support a higher level of energy and more working hours on the average. One important policy lever is the maximum workweek or work limit; an optimal work limit at which overall productivity is at its peak is shown to exist within a region of stability where burnout is avoided. The paper concludes with a strategy for preventing burnout, which emphasizes the individual's responsibility for understanding the self‐inflicted nature of this problem and pursuing an effective course of stability.