z-logo
open-access-imgOpen Access
Adult tissue–derived neural crest‐like stem cells: Sources, regulatory networks, and translational potential
Author(s) -
Mehrotra Pihu,
Tseropoulos Georgios,
Bronner Marianne E.,
Andreadis Stelios T.
Publication year - 2020
Publication title -
stem cells translational medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.781
H-Index - 71
eISSN - 2157-6580
pISSN - 2157-6564
DOI - 10.1002/sctm.19-0173
Subject(s) - neural crest , biology , microbiology and biotechnology , stem cell , cellular differentiation , multipotent stem cell , neural stem cell , population , neuroepithelial cell , neuroscience , progenitor cell , genetics , gene , embryo , demography , sociology
Neural crest (NC) cells are a multipotent stem cell population that give rise to a diverse array of cell types in the body, including peripheral neurons, Schwann cells (SC), craniofacial cartilage and bone, smooth muscle cells, and melanocytes. NC formation and differentiation into specific lineages takes place in response to a set of highly regulated signaling and transcriptional events within the neural plate border. Premigratory NC cells initially are contained within the dorsal neural tube from which they subsequently emigrate, migrating to often distant sites in the periphery. Following their migration and differentiation, some NC‐like cells persist in adult tissues in a nascent multipotent state, making them potential candidates for autologous cell therapy. This review discusses the gene regulatory network responsible for NC development and maintenance of multipotency. We summarize the genes and signaling pathways that have been implicated in the differentiation of a postmigratory NC into mature myelinating SC. We elaborate on the signals and transcription factors involved in the acquisition of immature SC fate, axonal sorting of unmyelinated neuronal axons, and finally the path toward mature myelinating SC, which envelope axons within myelin sheaths, facilitating electrical signal propagation. The gene regulatory events guiding development of SC in vivo provides insights into means for differentiating NC‐like cells from adult human tissues into functional SC, which have the potential to provide autologous cell sources for the treatment of demyelinating and neurodegenerative disorders.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here