Premium
Epistemic tools in engineering design for K‐12 education
Author(s) -
Kelly Gregory J.,
Cunningham Christine M.
Publication year - 2019
Publication title -
science education
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.209
H-Index - 115
eISSN - 1098-237X
pISSN - 0036-8326
DOI - 10.1002/sce.21513
Subject(s) - philosophy of science , agency (philosophy) , curriculum , computer science , discipline , next generation science standards , science education , epistemology , engineering education , engineering ethics , mathematics education , knowledge management , sociology , psychology , pedagogy , engineering , engineering management , philosophy , social science
Engineering design provides unique ways to include epistemic tools to support collaborative sense‐making, reasoning with evidence, and assessing knowledge. Engineering design processes often require students to apply science concepts to solve problems. We draw from five engineering curricular units that engaged students in specific epistemic practices of engineering: constructing models and prototypes, making trade‐offs between criteria and constraints, and communicating through uses of conventionalized verbal, written, and symbolic models. Through analysis of curriculum products, student artifacts, and classroom discourse, we show how engaging in such practices requires the use of epistemic tools that shape, and are shaped by, the knowledge construction work of the members of the classrooms. The epistemic tools foster creating, sharing, and assessing knowledge claims. Six principles of practice for education demonstrate how such tools can be educative. These principles evince how epistemic tools support goal‐directed, concerted activity that can support the learning of disciplinary knowledge and practice and offer the potential to increase student agency.