z-logo
Premium
Efficient packet scheduling for heterogeneous multimedia provisioning over broadband satellite networks: An adaptive multidimensional QoS‐based design
Author(s) -
Du Hongfei,
Fan Linghang,
Evans Barry G.
Publication year - 2008
Publication title -
international journal of satellite communications and networking
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.388
H-Index - 39
eISSN - 1542-0981
pISSN - 1542-0973
DOI - 10.1002/sat.926
Subject(s) - computer science , quality of service , computer network , network packet , scheduling (production processes) , provisioning , broadband , distributed computing , multimedia , telecommunications , operations management , economics
With their inherent broadcast capabilities and reliable extensive geographical coverage, the broadband satellite networks are emerging as a promising approach for the delivery of multimedia services in 3G and beyond systems. Given the limited capacity of the satellite component, to meet the diverse quality of service (QoS) demands of multimedia applications, it is highly desired that the available resources can be adaptively utilized in an optimized way. In this paper, we draw our attention on the development and evaluation of an efficient packet scheduling scheme in a representative broadband satellite system, namely satellite digital multimedia broadcasting (SDMB), which is positioned as one of the most attractive solutions in the convergence of a closer integration with the terrestrial mobile networks for a cost‐effective delivery of point‐to‐multipoint services. By taking into account essential aspects of a successful QoS provisioning while preserving the system power/resource constraints, the proposed adaptive multidimensional QoS‐based (AMQ) packet scheduling scheme in this paper aims to effectively satisfy diverse QoS requirements and adaptively optimize the resource utilization for the satellite multimedia broadcasting. The proposed scheme is formulated via an adaptive service prioritization algorithm and an adaptive resource allocation algorithm. By taking into account essential performance criteria, the former is capable of prioritizing contending flows based on the QoS preferences and performance dynamics, while the latter allocates the resources, in an adaptive manner, according to the current QoS satisfaction degree of each session. Simulation results show that the AMQ scheme achieves significantly better performance than those of existing schemes on multiple performance metrics, e.g. delay, throughput, channel utilization and fairness. Copyright © 2008 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here